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Introduction

The pattern of blood flow in arteries is complex near bifurcations, bends and
stenoses. Study of such flow phenomena has drawn special attention of
researchers because of the possible relation between the flow pattern and
certain forms of arterial disease.

Clinical studies have shown that formation of atherosclerotic plague and
wall thickening in coronary arteries tends to localize in the vicinity of
bifurcations and junctions (Asakura and Karino, 1990; Caro et al., 1969). In
this region, the sudden change of wall curvature can cause the forward-
moving fluid to separate from the wall, resulting in a confined low velocity
reversed flow region. Low fluid velocity was speculated to suppress mass
transport between the mainstream and the wall and create a conducive
environment for lipids to accumulate in the vessel walls. In addition,
autoregulatory response to reversal of flow and wall shear stress could
damage the mechanical properties of the endothelium. Laboratory tests have
demonstrated the structural and functional changes in the endothelial cell
exposed to fluid mechanical forces.

It is evident that hemodynamic factors play an important role in the
development of atherosclerosis (Nerem, 1992; Nerem and Cornhill, 1980).
Numerous studies have been carried out to investigate the fluid dynamic
effects in bifurcations. Experimentally, Bharadvaj et al. (1982) and Ku and
Giddens (1987) measured velocity and shear stress distributions in a model of
the carotid bifurcation for steady and pulsatile flows. Walburn and Stein (1981)
conducted a similar experiment in a symmetric bifurcation comparable to the
human aorta. Most recently, Asakura and Karino (1990) examined flow
patterns and distributions of fluid velocity and wall shear stress in an isolated
human coronary arterial tree. They compared the results with the sites of
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atherosclerotic lesions and found that the lesions were exactly located in the
low fluid velocity regions.

Compatible with the experimental studies, numerical simulation has
provided detailed descriptions of flow in different bifurcation geometries. Early
numerical analyses include Agonafer et al. (1985), Fernandez et al. (1976),
Friedman and Ehrlich (1984) and Rindt et al. (1987) for flow in two-dimensional
bifurcations. In recent years, the advance in computing technology has made
numerical modelling of flow in three-dimensional bifurcations practical. Yung
et al. (1990) studied the steady flow in a symmetric bifurcation for various
upstream Reynolds numbers. They also traced the particle paths to examine if
fluid particles would be entrapped in the recirculation zone. Rindt et al. (1990)
analysed the steady flow in a carotid artery bifurcation. The flow patterns
obtained were similar to those predicted by Perktold and Resch (1990), Perktold
et al. (1991) and Yung et al. (1990), who simulated the pulsatile flow field in the
same geometry used by Rindt et al. (1990). While Yung et al. (1990) used the
finite difference technique for solving the governing equations, others used the
finite element approach. The results from the three-dimensional simulations
revealed the important effects of secondary flow, which cannot be predicted by
a two-dimensional analysis.

The effect of unsteadiness on flow characteristics has been studied by Siouffi
et al. (1984). The present study continues the work of Yung et al. (1990). In this
study, the analysis is extended to model pulsatile flow in a full three-
dimensional bifurcation using the finite difference technique. It is aimed to
investigate the effects of inflow unsteadiness on flow characteristics such as
recirculation, secondary motion, and wall shear stress distribution.

Mathematical model and numerical procedure

The problem considered here is the unsteady laminar flow of a homogeneous,
incompressible, Newtonian fluid through a bifurcated channel with rigid walls.
For constant density and viscosity, the dimensionless equations of continuity
and momentum are:

Vu=0

du _ 12

o +uVu=-Vp+ Rev u

where Re is the mean Reynolds number. The quantities are non-dimensional-
ized with respect to the inlet diameter of the channel and the mean inlet velocity.
Non-slip boundary conditions are used at the walls by setting all the velocity
components equal to zero. At the inlet, fully developed pulsatile laminar flow is
applied. The axial velocity is varied with time according to the waveform of the
pulsatile flow while the transverse velocities are set to zero. At the exit of the
daughter tubes, a zero second derivative in the mean flow direction is imposed



on the velocities and pressure. The axial velocity obtained is adjusted to satisfy
overall mass conservation.

The computational method follows that of Yung et al. (1990); therefore,
only a brief discussion is given here. For the irregular bifurcation geometry,
the body-fitted co-ordinate transformation is used to convert the curved flow
domain into a rectangular computational domain. The governing equations
of velocity and pressure in the transformed field are discretized by the
control volume method and a hybrid difference scheme (Patankar, 1980) to
form a set of algebraic equations. These equations express the relation
between the variable at the centre of a control volume and its neighbouring
points. The equations are solved using the pressure correction method
(Patankar, 1980).

The geometry used is the same as in the previous analysis (Yung et al., 1990).
Figure 1 shows a perspective view of the bifurcation and Figure 2 illustrates the
bifurcation geometry. The computation used 27 x 17 x 23 nodal points in the x,
y and z directions respectively. The grid nodes were generated for each z plane
by solving a pair of Poisson equations subject to Dirichlet boundary conditions
(Thomas and Middlecoff, 1980). The pulsatile flow waveform was taken from
Bharadvaj et al. (1982) and assumed a mean Reynolds number of 400.
Subdivision of the waveform into as many as 60 time steps produced the same
calculated results as did 14 time steps. For computational efficiency, 14 time
steps were therefore used, a selected four of which are designated as shown in
Figure 3.

To start the calculation at each time step the inlet velocity is prescribed
according to the position in the pulse cycle. The governing equations are
solved iteratively until the maximum residue for all equations is below 1073,
The residue is defined as the difference between the right and left hand sides of
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Figure 1.

Perspective view of the
symmetric bifurcation
model
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Figure 2.

Geometry of the
bifurcation showing the
six axial locations
where the results are
presented

Bifurcation

Apex Outer Corner

“— 05D

the momentum equation divided by the inlet momentum. At the end of each
time step, the mass flow rate through every z plane is checked. The maximum
error as compared with the inflow is less than 0.1 per cent. Since the equations
solved at the first time step would not have used the correct values for the
variables at the previous time step, the computations have to be performed for
more than one pulse cycle. For the current problem, the computations were
performed for two complete cycles. At the end of the second cycle, the
solutions were within 1 per cent of the previous cycle values. All computations
were performed on the Ohio Supercomputer Center’s Cray YMP8. The time
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required for one cycle of computations was approximately 12 CPU hours. This
is comparable with 14 CPU hours on a CONVEX C1-XP machine reported by
Perktold et al. (1991) for 98 time steps for a comparable mesh using the finite
element method.

Results

The computed flow fields are presented for six downstream locations, labelled
S1to S6 in Figure 2, and for four different times, T5, 9, 11 and 14, as marked in
Figure 3. These four time steps correspond to the maximum or peak systolic
flow (Re = 1,250), the minimum flow (Re = 175), peak diastolic flow (Re = 580)
and end (or start) of the pulse cycle (Re = 300) respectively.

Figures 4-7 are the three-dimensional axial velocity profiles at those time
steps and positions. At the apex plane and immediately downstream of the
bifurcation, stations S1 and S2, the velocity deflects towards the inner wall
(flow-divider). The skewed velocity profile evens out downstream as seen in S5
and S6.

Figure 8 presents the velocity profiles in the bifurcation area for the four
time steps. The profiles are plotted in the symmetric bifurcation plane (y = 0).
When the flow enters the branches, the expansion of the flow area and the
sharp wall curvature create an environment favouring an adverse pressure
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Figure 3.

Pulsatile flow waveform
in the common carotid
artery as reported by
Bharadvaj et al. (1982)
with labels of the four
time steps where the
results are presented
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Figure 4.
Three-dimensional axial
velocity profile at
stations S1-S6 at time
step T5 (peak systolic
flow)

gradient. During the acceleration phase of the pulse cycle, T1-T5, large flow
rates supply enough energy to overcome the momentum deficit due to the
change in the wall boundaries and no flow separation is found. This result
agrees well with other numerical analyses (Nazemi et al., 1990; Perktold and
Hilbert, 1986). When the flow rate decreases during the deceleration phase of
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the pulse cycle, separation appears along the outer walls. The separation
attains its maximum at the lowest flow rate at T9. As the flow reaches the
diastole, T11, the increase of flow rate restores the axial flow momentum and
flushes out most of the reversed flow region. In the rear half of the pulse, flow
is decelerated, but a small recirculation zone remains. It vanishes in the middle
of the next acceleration phase.
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Figure 5.
Three-dimensional axial
velocity profile at
stations S1-S6 at time
step T9 (minimum flow
rate in pulse)
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The boundaries of the reverse flow region in the four vertical planes S1-S4 and
in the bifurcation plane are depicted in Figures 9 and 10 respectively (note that
no flow separation is observed at T5). The largest recirculation takes place at
about a one diameter distance from the apex and is more than half a diameter
in width. Table I lists the maximum forward and reversed dimensionless axial
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velocities at sections S1 and S2 for the four time steps. At T9, the magnitude of
the reversed flow is nearly 50 per cent of the forward flow. However, at T11 and

T14, it is drastically reduced to less than 3 per cent of the axial velocity.

It is noted that the recirculation zone formed at the lowest flow rate extends
well upstream into the mother tube and downstream into the daughter tubes
along the outer walls. The same phenomenon was also noticed in the work of
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Figure 8.

Vector velocity plot in
the bifurcation plane in
the vicinity of the
bifurcation for time
steps T5, T9, T11 and
T14

Nazemi et al. (1990) and Perktold and Resch (1990). In the experiment by Ku and
Giddens (1987), the flow underwent a pulse cycle which did not have as large a
drop in flow rate as in this analysis and the elongated separation was not
observed. For the present pulse cycle, when the flow rate at time step T9 was
raised to twice its original value, the extended flow separation disappeared. It is
not known if this unusual flow separation will occur in physiological situations.
In human arteries, it is more likely that the decrease in the flow rate will be
accompanied by contraction of the vessel wall, thus preventing the large
amount of reversed flow.

Secondary flow is brought about when the three-dimensional flow changes
path or direction, such as in the bifurcation. The centrifugal force induced from
this type of flow pushes the fluid towards the wall and causes a concavity in
the velocity profiles as shown in Figures 4-7. The velocity vectors of the
secondary flow at station S2 for various time steps are depicted in Figure 11.
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S1 S2

S3 S4

The flow consists of two semi-circular streams which move in a spiral course
from the apex to the outer edge along the upper and lower walls and return to
the inner corner following a path parallel to the symmetric plane. The fluid
particles are at a higher velocity when they approach the inner wall than when
moving outward. Table Il gives the maximum dimensionless transverse
velocities at sections S1-S4 for various times. The ratio of the transverse
velocity to the axial velocity is almost constant at each section, regardless of
the flow rate. In this study, secondary flow was observed during the entire
pulse cycle. Although similar results were reported in many experiments (Ku
and Giddens, 1987), some did not observe the circumferential motion (Walburn
and Stein, 1981) and some observed the circumferential motion only during the
deceleration phase (Fukushima et al., 1987). It may not be appropriate to make

Pulsatile flow
through a
bifurcation

853

Figure 9.
Recirculation zones in
the four vertical planes
S1-S4 at the time steps
T9,Tlland T14
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Figure 10.
Recirculation zones in
the bifurcation plane at
the time steps T9, T11
and T14

S1

S2




a direct comparison between these results because of the differences in
geometries and conditions.

The shear stress along the outer and inner walls is presented in Figures 12
and 13 respectively. The magnitude of the shear stress is proportional to the
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Maximum dimensionless Maximum dimensionless
velocity at S1 velocity at S2
Time label Axial Reversed Axial Reversed
T5 2.807 - 2.656 -
T9 1.216 0.618 1.18 0.563
T11 1.885 0.058 1.82 0.007
T14 1.118 0.038 1.078 0.019

Table I.

Maximum forward and
reversed dimensionless
axial velocities
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Figure 11.

Vector velocity plot of
secondary flow at
station S2 for time steps
T5,T9, T1land T14




HFF instantaneous flow rate except at some locations where the flow is altered
7.8 significantly. In the upstream region of the bifurcation, the constant shear stress
indicates an undisturbed flow profile. Near the corner of the outer wall, the
shear stress abruptly drops because of the sudden area increase. From the
highest flow rate at T5 to the end of the diastole, T14, the wall shear stress in
the outer corner region varies considerably. Along the flow divider or inner wall
856 the shear stress has a similar pattern for all time steps. It reaches its maximum
value at one diameter away from the apex and decreases to a minimum at ten
diameters downstream followed by a small increase. The shear stress is
calculated from the velocity gradient at the wall. Since a larger daughter-to-
parent area ratio is used in this study, a lower averaged velocity and a smaller
wall shear stress is predicted as compared to other analyses (Ku and Giddens,
1987; Perktold and Resch, 1990).
Maximum dimensionless secondary velocity
Time label S1 S2 S4
T5 0.763 0.454 0212 0.102
Tableql. T9 0379 0.24 0.155 0.101
Maximum dimensionless
Secondary velocities T11 0.558 0.347 0.156 0.094
at stations T14 0.338 0216 0.091 0.056
Wall Shear Stress (dynes/cm?)
60.00 Key
Outer Corner —T5
50.00
40.00
30.00
20.00
10.00—
0.00
-10.00
Figure 12.
Outer wall shear stress
at time steps T5, T9, —20.00— ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60

Tlland T14

Dimensionless Axial Distance from Inlet (Z/D)
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Discussion

Pulsatile flow through a bifurcation is characterized by unsteadiness,
separation and secondary motion. The interaction of these mechanisms
produces very complex flow phenomena. These complex flow patterns are
believed to be directly related to the development of atherosclerosis. The present
numerical study provides a quantitative picture of the pulsatile flow in a three-
dimensional symmetric bifurcation. Although a quantitative comparison with
experimental measurements in such a situation is not available, the flow
pattern obtained is in qualitative agreement with experimental results (Ku and
Giddens, 1987; Walburn and Stein, 1981).

The velocity profiles presented here show a marked change during the
systolic phase. In the diastolic phase, the flow behaves steadily and the
characteristics are more like steady flow. Flow separation and recirculation
appear in distinct portions of the pulse cycle; they are located on the outer
walls near the bifurcation entrance. Contrary to the steady state flow (Yung
et al., 1990), where the recirculation zone is augmented with increasing
Reynolds number or flow rate, the pulsatile flow exhibits flow separation
only under decelerating conditions. The size of the recirculation region varies
with time and is enhanced by flow deceleration. At the lowest flow rate, the
reversed flow region occupies half of the tube diameter. It is comparable in
size to that obtained at steady state at the maximum flow rate of this
waveform. Walburn and Stein (1981) postulated that the large flow reversal
at the minimum flow rate was caused by the disappearance of the secondary
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Figure 13.

Inner wall shear stress
at time steps T5, T9,
Tlland T14
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Table I11.

Maximum forward and
reversed dimensionless
axial velocities and
maximum dimensionless
secondary velocity at
stations S1-S4 for steady
flow at Re = 400 and
1,250

flow in the deceleration phase. Lack of secondary flow was also revealed in
the experiments made by Brech and Bellhouse (1973) and Fukushima et al.
(1987) during acceleration of the pulse cycle. These observations differ from
the present analysis. The reason is mainly due to the different pulse
waveforms and bifurcation geometries. The secondary flow exists at all
times in this study. The strength of the transverse motion is proportional to
the local axial flow velocity. The ratio varies from 0.3 at plane S1, to 0.1 at
planes S3 and S4. These numbers are in line with those for steady flow at
Reynolds numbers of 400 and 1,250, as presented in Table Ill. These results
indicate that the formation of secondary flow depends on the bifurcation
geometry and is not affected by the flow rate. The combination of the axial
flow with the secondary flow forms a strong helical motion which pushes
fluid from the mainstream to the recirculation area to ensure the exchange of
materials between these two regions and remove the possibility of stagnated
particles.

Wall shear stress is considered by many investigators to be the primary
hemodynamic factor in the progress of atherosclerosis, e.g. Caro et al. (1969),
Fry (1968), Sato et al. (1987) and Zarins et al. (1983). Fry (1968) reported that
a shear stress of about 380dynes/cm? would damage the endothelium of the
artery in a short period of time. Sato et al. (1987) also analysed the structural
and mechanical properties of the bovine endothelium exposed to shear
stresses from 10 to 85dynes/cm2. They found a significant change in the
structure of the cells in the monolayered endothelium. The endothelium cells
were tightly packed when exposed to high shear and showed intercellular
spaces under low shear stress. This might suggest that low shear regions
may have a higher affinity for formation of lesions by allowing the influx of
atherogenic molecules and may therefore be more conducive to the
development of atherosclerosis. It has been shown that there is a positive
correlation between the site of atherosclerotic lesions and low wall shear

Location Min. axial velocity Max. axial velocity Max. sec. velocity
Re =400

S1 -0.603 4512 1.439

S2 -0.441 4.285 0.887

S3 0.000 3.709 0.444

S4 0.000 3.357 0.366

Re = 1,250

S1 -0.055 1412 0.426

S2 -0.023 1.364 0.272

S3 0.000 1.246 0.124

S4 0.000 1.058 0.079




stress (Asakura and Karino, 1990). For the geometry studied, the low shear
region is identified in the vicinity of the bifurcation along the outer walls. In
that region, the fluid moves very slowly and the flow changes direction
regularly. The time averaged wall shear stress distributions on the outer and
inner walls are shown in Figures 14 and 15 respectively. The steady state
values at the mean Reynolds number, Re = 400, are also presented in the
same figures for comparison. The difference in the outer wall shear stress in
the upstream region between the time averaged and steady state values is
due to the extended region of reverse flow in the unsteady problem at time
step T9. At the inlet, the values are identical. The overall small difference in
the shear stress and the transverse flow pattern between the steady and
pulsatile flows suggests that these two types of flow are basically similar in
nature.

In the lowest flow rate of the cycle, an extended reversed flow region was
found. It is thought that the decrease of flow rate will be coupled with the
movement of the vessel wall in a physiological situation to keep the flow
from reversing. The effect of compliance of the arterial wall on the change of
flow rate and the shear stress has been investigated (Deters et al., 1986;
Duncan et al., 1990; Dutta et al., 1992; Klanchar et al., 1990; Liepsch and
Moravec, 1984). Deters et al. (1986), measured the wall motion against the
flow rate in a compliant arterial cast and found that the displacement of wall
surface was in accordance with the flow rate. The surface moved outwards
during the acceleration phase and moved inwards during deceleration. The

Wall Shear Stress (dynes/cm¥)
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Figure 14.
Comparison of time
averaged and steady
flow shear stress
distributions along the
outer wall
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Figure 15.
Comparison of time
averaged and steady
flow shear stress
distributions along the
inner wall

Wall Shear Stress (dynes/cm?)
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effect of wall elasticity is recognized, but how that affects the wall shear
stress has produced mixed results. Liepsch and Moravec (1984) reported a
shear stress decrease of 25 per cent when the vessel wall was elastic. On the
other hand, Mark et al. (1985) found 25 per cent elevation of the maximum
shear stress in a compliant cast. More recently, Dutta et al. (1992) and
Klanchar et al. (1990) observed that the wall shear stress was sensitive to the
phase angle between the pressure and flow waves. They reported a fivefold
increase in shear rate over a small phase angle range. The above studies
underscore the importance of the wall movement. Nevertheless, the
properties of vessel walls have not been considered in most of the numerical
bifurcated flow simulation studies.

Summary

The three-dimensional pulsatile flow characteristics in a symmetrical
bifurcation with a branch-to-trunk area ratio of 2.0 and a branching angle of
60° have been investigated numerically. The predicted flow profiles
qualitatively resemble those obtained from experimental measurements. The
flow recirculation appears only in the deceleration phase, and its size changes
with time. The locations correspond well to the relation of low wall shear
stress and the site of atherosclerosis. From a comparison of the pulsatile and
steady flow results, the presence of the secondary flow is found to depend on
the bifurcation geometry and not on the pulse wave or flow rate. It also shows
that these two types of flow have similar flow characteristics, such as velocity



profile shape, size of recirculation, secondary flow and wall shear stress
distribution.

References

Agonafer, D., Watkins, C.B. and Cannon, J.N. (1985), “Computation of steady flow in a two-
dimensional arterial model”, Journal of Biomechanics, Vol. 18, pp. 695-701.

Asakura, T. and Karino, T. (1990), “Flow patterns and spatial distribution of atherosclerotic
lesions in human coronary arteries”, Circ. Res., Vol. 66, pp. 1,045-66.

Bharadvaj, B.K., Mabon, R.F. and Giddens, D.P. (1982), “Steady flow in a model of the
human carotid bifurcation. Part | — flow visualization”, Journal of Biomechanics, Vol. 15,
pp. 349-62.

Brech, R. and Bellhouse, B.J. (1973), “Flow in branching vessels”, Cardiovasc. Res., Vol. 7,
pp. 593-600.

Caro, C.G,, Fitz-Gerald, J.M. and Schroter, R.C. (1969), “Arterial wall shear and distribution of early
atheroma in man”, Nature, Vol. 223, pp. 1,159-61.

Deters, O.J., Bargeron, C.B., Mark, FF. and Friedman, M.H. (1986), “Measurement of wall motion
and wall shear in a compliant arterial cast”, Journal of Biomechanical Engineering, Vol. 108,
pp. 355-8.

Duncan, D.D,, Bargeron, C.B., Borchardt, S.E., Deters, O.J., Gearhart, S.A., Mark, F.F. and
Friedman, M.H. (1990), “The effect of compliance on wall shear in casts of a human aortic
bifurcation”, Journal of Biomechanical Engineering, Vol. 112, pp. 183-8.

Dutta, A., Wang, D.M. and Tarbell, J.M. (1992), “Numerical analysis of flow in an elastic artery
model”, Journal of Biomechanical Engineering, Vol. 114, pp. 26-33.

Fernandez, R.C., De Witt, K.J. and Botwin, M.R. (1976), “Pulsatile flow through a bifurcation with
applications to arterial disease”, Journal of Biomechanics, Vol. 9, pp. 575-80.

Friedman, M.H. and Ehrlich, L.W. (1984), “Numerical simulation of aortic bifurcation flows: the
effect of flow divider curvature”, Journal of Biomechanics, Vol. 17, pp. 881-8.

Fry, D.L. (1968), “Acute vascular endothelial changes associated with increased blood velocity
gradients”, Circ. Res., Vol. 22, pp. 165-97.

Fukushima, T., Homma, T., Azuma, T. and Harakawa, K. (1987), “Characteristics of secondary
flow in steady and pulsatile flows through a symmetrical bifurcation”, Biorheology, Vol. 24,
pp. 3-12.

Klanchar, M., Tarbell, J.M. and Wang, D.M. (1990), “In vitro study of the influence of radial
wall motion on wall shear stress in an elastic tube model of the aorta”, Circ. Res., Vol. 66,
pp. 1624-35.

Ku, D.N. and Giddens, D.P. (1987), “Laser doppler anemometer measurements of pulsatile flow in
a model carotid bifurcation”, Journal of Biomechanics, Vol. 20, pp. 407-21.

Liepsch, D. and Moravec, St. (1984), “Pulsatile flow of non-Newtonian fluid in distensible models
of human arteries”, Biorheology, Vol. 21, pp. 571-86.

Mark, FF, Deters, OJ., Bargeron, C.B. and Friedman, M.H. (1985), “Hermodynamic measurements
of pulsatile flow through a compliant cast of a human aortic bifurcation”, Adv. Bioeng., pp. 59-60.

Nazemi, M., Kleinstreuer, C. and Archie, J.P. Jr, (1990), “Pulsatile two-dimensional flow and plaque
formation in a carotid artery bifurcation”, Journal of Biomechanics, Vol. 23, pp. 1,031-7.

Nerem, R.M. (1992), “Vascular fluid mechanics, the arterial wall and atherosclerosis”, Journal of
Biomechanical Engineering, Vol. 114, pp. 274-82.

Nerem, R.M. and Cornhill, J.F. (1980), “The role of fluid mechanics in atherogenesis”, Journal of
Biomechanical Engineering, Vol. 102, pp. 181-9.

Patankar, S.V. (1980), Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC.

Pulsatile flow
through a
bifurcation

861




HFF
7.8

862

Perktold, K. and Hilbert, D. (1986), “Numerical simulation of pulsatile flow in a carotid bifurcation
model”, Journal of Biomedical Engineering, Vol. 8, pp. 193-9.

Perktold, K. and Resch, M. (1990), “Numerical flow studies in human carotid artery bifurcations:
basic discussion of the geometric factor in atherogenesis”, Journal of Biomedical Engineering,
Vol. 12, pp. 111-23.

Perktold, K., Resch, M. and Peter, R.O. (1991), “Three-dimensional numerical analysis of pulsatile
flow and wall shear stress in the carotid artery bifurcation”, Journal of Biomechanics, Vol. 24,
pp. 409-20.

Rindt, C.C., van Steenhoven, A.A., Janssen, J.D,, Reneman, R.S. and Segal, A. (1990), “A numerical
analysis of steady flow in a three-dimensional model of the carotid artery bifurcation”, Journal
of Biomechanics, Vol. 23, pp. 461-73.

Rindt, C.C., van de Vosse, F.N., van Steenhoven, A.A., Janssen, J.D. and Reneman, R.S. (1987), “A
numerical and experimental analysis of the flow field in a two-dimensional model of the
human carotid artery bifurcation”, Journal of Biomechanics, Vol. 20, pp. 499-509.

Sato, M., Levesque, M.J. and Nerem, R.M. (1987), “Micropipette aspiration of cultured bovine
aortic endothelial cells exposed to shear stress”, Arteriosclerosis, Vol. 7, pp. 276-86.

Siouffi, M., Pelissier, R., Farahifar, D. and Rieu, R. (1984), “The effect of unsteadiness on the flow
through stenoses and bifurcations”, Journal of Biomechanics, Vol. 17, pp. 299-315.

Thomas, D. and Middlecoff, J. (1980), “Direct control of grid point distribution in meshes
generated by elliptic equations”, AIAA Journal, Vol. 18, pp. 652-60.

Walburn, FJ. and Stein, P.D. (1981), “Velocity profiles in symmetrically branched tubes simulating
the aortic bifurcation”, Journal of Biomechanics, Vol. 14, pp. 601-11.

Yung, C.N., DeWitt, K.J. and Keith, T.G. Jr, (1990), “Three-dimensional steady flow through a
bifurcation”, Journal of Biomechanical Engineering, Vol. 112, pp. 189-97.

Zarins, C.K.,, Giddens, D.P., Bharadvaj, B.K., Sottiurai, V.S., Mabon, R.F. and Glagov, S. (1983),
“Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow
velocity profiles and wall shear stress”, Circ. Res., Vol. 53, pp. 502-14.



